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Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward-looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2018 Splunk Inc. All rights reserved.
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Talk Contents

What is in a machine learning model?

How do machine learning models get biased?
New and improved ways to spot bias

How to address bias after you spot it
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How algorithms get
biased

What we covered last year
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Components of a Machine Learning Model
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Example Machine Learning Model

Which universities are the best?

» Data Collection » Real Factors » Model Proxy Features
* N of professors /  Satisfaction * Teacher / student ratio
Instructors » Personal growth * SAT scores
* Research publications * Career suUCCess » Graduation rates

* Infrastructures

* Happiness Employment rate

* Classes

Reputation scores

Source: US News and World Report, “Weapons of Math Destruction” by Cathy O’Neil
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It's Easy to Introduce Bias

Feature engineering | ~dorithm/

2 Objective function
Subjective features

Incomplete features Opaque _b|aCk'b0XGS
Wrong features Standardized preference

@ Decision-making /
Data collection Feedback loops
Incomplete data Model outcomes have

Biased data

global impact
Your Model
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Recognizing bias in

data requires
everybody’s best
effort

NNNNNNNNNNNNNNN

. Ask If the data Is representative.
. Ask If the data Is biased.

. Ask If the features are accurate

proxies.

. Ask If the goal of the model is

unbiased.

. Ask about the implications of the

model results.
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Spot bias In data

Methods to identify biased data

splunk> -



© 2018 SPLUNK INC.

Datasheets for Datasets

Keep Context with the Data

» Use and produce datasheets for datasets that you use and/or create

» Datasheets contain:
* Why the dataset was created
* What is in the dataset
* How the data was collected
* How the data was cleaned or pre-processed
* Whether the dataset is maintained

» Helps you better identify biased data, or whether or not a specific dataset could
lead to biased outcomes if used for a different purpose than the one for which it
was originally used

Source: Gebru, Morgenstern, Vecchione, Wortman Vaughan, Wallach, Daume lll, Crawford, 2018
https://arxiv.org/abs/1803.09010
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Spot bias In models
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Define Fair Model OQutcomes

Define what fairness means

» Fairness happens when all model components (data, features, algorithms)
are not a function of a protected group

» Model evaluation metrics should be similar among groups

» Remember the risk scores for recidivism we talked about last year?
* Courts in the US use a mathematical “risk assessment” for individuals

* Compare: model prediction (“High”, “Medium”, “Low” risk) vs real outcome (Conviction within 2
years)

* How good was the model at predicting recidivism in general?
* How good was the model at predicting recidivism by race?
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Dashboard to Audit Algorithmic Bias

Demo time

Evaluate the data for
* Equal representation (representation balance of groups)
* Equal real world outcomes (same distribution of real life outcomes)

Evaluate the model for
* Precision rate parity (true positives vs false positives)
* Recall rate parity (true positives vs false negatives)

Set a “fairness threshold”

Code : https://github.com/ctretto/splunk-discriminatorybias
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Biased Data

Demo time
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True Positives
True Negatives
False Positives
False Negatives
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Leads to Poor Model Performance

Demo time
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Tools to Audit Algorithmic Bias

Online resources

» Aequitas: Open Source Bias Audit Toolkit from University of Chicago
(https://dsapp.uchicago.edu/aequitas/)

* Python tool similar to our dashboard

» TuringBox: Crowdsourcing model evaluation
(https://turingbox.mit.edu/upload.html)

* Still being developed
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Fix your model

After you spot bias in your model, fix it
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Fix a Blased Model

It’s not simple but it is important

» Assumption: we want to avoid bias based on protected attributes like gender,
race, age, etc.,

» Three approaches (that we’ll talk about):
* Consider fairness in your algorithm’s objective function

* Simulate multiple counterfactual worlds
* Adversarial models
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Different types of fairness

What do fair model outcomes look like?

» Fair treatment: model features are independent of protected attributes
* Model cannot use protected attributes for prediction
* Unrealistic assumption!

» Fair impact: model predictions are independent of protected attributes

* Predictions for attribute = 0 are the same as predictions for attribute = 1

* Equality of opportunity: Prob( correct_prediction and attribute = 0 ) = Prob(correct_prediction
and attribute = 1)
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Method 1: Consider Fairness in Objective Function

Include a fairness score in algorithm criteria

Example: predict whether a purchase will be made

Develop two models based on various features and train both to predict
“Purchase”

* Modell: some features are correlated with protected attributes (e.g., ZIP codes with race)
* Model2: features are not correlated with protected attributes (e.g., returning customer)

Based on the model outcomes, pick the “best” model

* If “best” means “best at predicting purchase” we could pick a discriminatory model

* Both Model1 and Model2 have “fair treatment” because the features are not directly reliant on
protected attributes

* But Modell is still discriminating based on protected attributes
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Method 1: Consider Fairness in Objective Function

Include a fairness score in algorithm criteria
» Proposal: include a “fairness” component in the objective function

» Think of it as two models in one

* | want my features to be very good at predicting purchases, but
* | do not want the quality of my prediction to be correlated with protected attributes

Model 1 0.8 -0.25 0.55
Model 2 0.7 -0.1 0.6

» Drawback:

* Prediction power of Model2 is not as good
* The quality of the model depends on how much discrimination bias is present in the data

. Source: M.B. Zafar, Valera, Gomes Rodriguez, Gummadi 2015
“https://arxiv.org/abs/1507.05259 I :
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Method 1: Takeaways

Include a fairness score in algorithm criteria

Think of avoiding bias as a feature selection / model comparison process
Compare models, play with your features
Predict sensitive attributes using your model’'s features

Use the results from the Bias Audit Dashboard to build an unfairness
penalization score
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Method 2: Assess Results in a Counterfactual World

Addresses historical bias present in data

A decision is fair towards an individual if it's the same in the actual world and in
a counterfactual world

Example: determine law school success given SAT scores and GPA
Proposal: add unknown social biases to the model

Multi-step process:
* Step 1: Simulate numerous versions of a socially biased world.

v

v

v

v

* Step 2: Based on those simulations, create a “knowledge” factor that cannot be observed but
normalizes the social biases across those simulated worlds.

* Step 3: Predict law school grades using SAT scores, GPA, protected attributes, and the
knowledge factor

Source: Kusner, Loftus, Russel, Silva 2018
https://arxiv.org/abs/1703.06856
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Method 2: Takeaways

Addresses historical bias present in data

» Can you build better features?

» Can you research what are the social biases that are present in the world you
are modeling?

» Present your model findings together with other sources of information
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Method 3: Generative Adversarial Models

Generative vs. discriminative models

» Generative algorithm models generate data with the same structure as
original data

» Generative Adversarial Networks are a class of neural networks
» Generative Adversarial Networks (GANs) are composed of
* Generator: generates data
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Method 3: Generative Adversarial Models

Generative vs. discriminative models

» Adversarial models are also a way to corrupt the inputs of a model to
Intentionally pollute the results

“panda” “gibbon”

57.7% confidence 36 confidence

» Adversarial learning strives to make models more robust to noise in the data

» What if bias was the noisy component?
Source: Zhang, Lemoine, Mitchell 2018 https://arxiv.org/abs/1801.07593

«. Source: Xu, Zhang, Yuan, Wu 2018 https://arxiv.org/pdf/1805.11202.pdf
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Method 3: Takeaways

Include a fairness score in algorithm criteria

Can you simulate unbiased data?

Can you resample your data in order to avoid some of the biases?
Compare model results with different datasets, both real and simulated
GANSs are available with Keras and TensorFlow
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Conclusion
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1. Machine learning is not doomed.

2. Determine what types of bias you want
to address.

3. Write datasheets for datasets to
prevent potential data bias.

Pandas are not gibbons

4. Use automated tools to identify model
bias.

5. Use the available methods to reduce
blas.
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Thank You!

Don't forget to rate this session
In the .confl8 mobile app
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